top of page

Research

My research focuses on mathematical modeling of biological and environmental phenomenon (e.g., lattice Lotka-Volterra systems) and operations research (e.g., fuzzy optimization).

Publications

J. M. Tubay and J. Yoshimura. Resistance of a terrestrial plant community to local microhabitat changes. Ecology and Evolution, 2018;00:1–10. https://doi.org/10.1002/ece3.4093.

The number of plant and animal species that exist today is estimated to be around 8.7 million. Approximately 300,000 of these species are flora. This extremely high species diversity has been puzzling scientist since the beginning of ecological research because most of these species compete for limited resources that should lead to the exclusion of all but few superior species. This can be seen in a number of coexistence model today that can only maintain at most four species at a time. We have shown recently that by incorporating minute differences in microhabitat to a lattice competition model, about 13 species can coexist from an initial number of 20. Here, we improve the model further by considering that microhabitat differences are not fixed but can change over time which can affect coexistence. A primary driver to this alteration is climate change, both natural and human induced. To show the resistance of a lattice plant community model, a dynamic microhabitat locality is incorporated by changing the spatial and species‐specific heterogeneity of each lattice site. We show that even if the microhabitat locality of each plant species is dynamic, diversity can still be maintained in a lattice plant ecosystem model. This shows that natural communities of terrestrial plants can be resistant to the stress of microhabitat locality changes to a certain extent.

The epigenetic landscape illustrates how cells differentiate through the control of gene regulatory networks. Numerous studies have investigated epigenetic gene regulation but there are limited studies on how the epigenetic landscape and the presence of pathogens influence the evolution of host traits. Here, we formulate a multistable decision-switch model involving several phenotypes with the antagonistic influence of parasitism. As expected, pathogens can drive dominant (common) phenotypes to become inferior through negative frequency-dependent selection. Furthermore, novel predictions of our model show that parasitism can steer the dynamics of phenotype specification from multistable equilibrium convergence to oscillations. This oscillatory behavior could explain pathogen-mediated epimutations and excessive phenotypic plasticity. The Red Queen dynamics also occur in certain parameter space of the model, which demonstrates winnerless cyclic phenotype-switching in hosts and in pathogens. The results of our simulations elucidate the association between the epigenetic and phenotypic fitness landscapes and how parasitism facilitates non-genetic phenotypic diversity.

A fuzzy goal programming (FGP) model for biodiesel production in the Philippines was formulated with Coconut (Cocos nucifera) and Jatropha (Jatropha curcas) as sources of biodiesel. Objectives were maximization of feedstock production and overall revenue and, minimization of energy used in production and working capital for farming subject to biodiesel and non-biodiesel requirements, and availability of land, labor, water and machine time. All these objectives and constraints were assumed to be fuzzy. Model was tested for different sets of weights. Results for all sets of weights showed the same optimal allocation. Coconut alone can satisfy the biodiesel requirement of 2% per volume.

Almost all terrestrial plant communities usually consist of many species and beside some climax forests, natural communities with a single species are rare. This suggests that the coexistence of many plant species is a common and ubiquitous feature of natural communities. However, all these coexisting species are in fact competing for the same resources, e.g., light, soil nutrients and water. Here we consider the mechanism that allows for the coexistence of competing species in terrestrial vegetation such as temperate forests and grasslands. 

In host-parasite systems, dominant host types are expected to be eventually replaced by other hosts due to the elevated potency of their specific parasites. This leads to changes in the abundance of both hosts and parasites exhibiting cycles of alternating dominance called Red Queen dynamics. Host-parasite models with less than three hosts and parasites have been demonstrated to exhibit Red Queen cycles, but natural host-parasite interactions typically involve many host and parasite types resulting in an intractable system with many parameters. Here we present numerical simulations of Red Queen dynamics with more than ten hosts and specialist parasites under the condition of no super-host nor super-parasite. The parameter region where the Red Queen cycles arise contracts as the number of interacting host and parasite types increases. The interplay between inter-host competition and parasite infectivity influences the condition for the Red Queen dynamics. Relatively large host carrying capacity and intermediate rates of parasite mortality result in never-ending cycles of dominant types.

Modern biology will never be the same without mathematical and computational tools. Using mind map with “epigenetics” as the root, we discuss the current advancement in the field of biomathematics for modeling cell-fate specification. In the discussions, we also present possible directions for future research.

The biodiversity loss of phytoplankton with eutrophication has been reported in many aquatic ecosystems, e.g., water pollution and red tides. This phenomenon seems similar, but different from the paradox of enrichment via trophic interactions, e.g., predator-prey systems. We here propose the paradox of enrichment by induced competitive interactions using multiple contact process (a lattice Lotka-Volterra competition model). Simulation results demonstrate how eutrophication invokes more competitions in a competitive ecosystem resulting in the loss of phytoplankton diversity in ecological time. The paradox is enhanced under local interactions, indicating that the limited dispersal of phytoplankton reduces interspecific competition greatly. Thus, the paradox of enrichment appears when eutrophication destroys an ecosystem either by elevated interspecific competition within a trophic level and/or destabilization by trophic interactions. Unless eutrophication due to human activities is ceased, the world's aquatic ecosystems will be at risk.

J. M. Tubay, R.G. Panopio and G.A. Mendoza. A fuzzy multiple objective linear programming model for the optimal allocation of feedstock for bioethanol production, UPLB Journal (JanuaryDecember 2010), Vol. 8, pp. 159-179.

Fuzzy goal programming model is used to adress the issue on food vs fuel in bioethanol production.

Please reload

bottom of page